روش عناصر مرزی با گالرکین متقارن و کار برد آن در حل معادلات دیفرانسیل جزیی

thesis
abstract

روش های عددی در مکانیک محیط های پیوسته عبارتند از روش تفاضلات متناهی روش اجرای محدود و روش اجزای مرزی، در این میان روش تفاضلات متناهی اولین روش شناخته شده در این حوزه است. در این روش معمولاً از بسط تیلور برای گسسته سازی معادلات حاکم استفاده شده، و برای یک دامنه محاسباتی دو بعدی، شبکه ای از سلول های داخلی دامنه محاسباتی استفاده شده، و تقریب تفاضلی برای نقاط داخلی اعمال می شود. اجزای محدود روش دیگری است که در آن دامنه مورد بررسی به اجزای کوچک تر افراز و با اعمال شرایط تعادل و همسان سازی بین آنها یک دستگاه معادلات کلی تشکیل می-گردد. سرانجام با حل این دستگاه به تحلیل کامل سیستم می انجامد. روش تفاضلات متناهی قادر به مدل کردن انواع محیط های فیزیکی با تغییرات بالا نبوده و روش اجزای محدود نیز به دلیل حجم بالای اطلاعات و داده های اولیه و عدم توانایی در مدل کردن محیط های نامحدود بعضاً ناکارآمد می باشد. اما روش مورد بررسی در این پایان نامه، یعنی روش اجزای مرزی معادلات دیفرانسیل را به اتحادهای انتگرالی روی مرز تبدیل نموده و تقسیم بندی مرز به اجزای کوچک تر همانند سایر روش های عددی به یک دستگاه معادلات جبری خطی که دارای جواب یکتا است منجر می گردد. مهم ترین ویژگی این روش زمان کمتر برای آماده سازی اطلاعات و ذخیره سازی رایانه ای به دلیل کاهش بعد دامنه محاسباتی و دقت بالای محاسبات به دلیل عدم وجود هر گونه تقریب اضافی در دامنه محاسباتی است. در فصل اول پایان نامه حاضر ابتدا مفاهیم، تعاریف و قضایای مقدماتی مورد نیاز در این تحقیق ارائه می گردد. سپس روش عناصر(اجزای) مرزی با گالرکین متقارن در فضای یک و دوبعدی برای حل مسایل پواسون با استفاده از توابع پایه ای تکه ای ثابت، در فصل دوم مورد مطالعه قرار می گیرد. در فصل سوم کاربرد این روش در الاستیسیته بیان، و فصل آخر به ارائه مثال های عددی همراه با برنامه رایانه ای در این خصوص اختصاص می یابد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

full text

روش موجک گالرکین برای حل معادلات دیفرانسیل

روش های عددی که معمولاً برای حل معادلات دیفرانسیل به کار می روند به دو دسته ی موضعی و طیفی تقسیم می شوند. وقتی که جواب مسائل مورد بحث متناوب باشد شناخته شده ترین روش طیفی، استفاده از سری فوریه است. در فصل اول این پایان نامه علاوه بر ذکر مقدماتی از آنالیز حقیقی،ابتدا به طور مختصر به آنالیز فوریه و عدم توانایی آن در نمایش رفتارهای موضعی توابع اشاره شده است. برخلاف چندجمله ایهای مثلثاتی، موجک ها در...

15 صفحه اول

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023